Some Safari browsers are failing to connect secured pages Try the following: - refresh the page a few time to see if the page loads, if this fails please update the browser or try to browse the page in Firefox or Chrome. - Read more.
Minispares.com uses cookies to give a better browsing experience. Read more 

Articles search results for oil pressure

Showing 1 to 20 of 61 articles
prev of  next

SHOCK ABSORBERS

Technical lowdown on shock absorbers,what to look for and what to buy Having introduced the fairly unknown Kayaba (KYB) range to the mini market in 1997 I am still amazed how gullible people are when buying cheap dampers. I have tried every type popular type available in the last 35 years, Armstrong including their adjustables, Girling, lockheed, Koni, Spax., Avo, Bilstein,Monroe,Boge,Gabriel and GMax The best to date were probably the very expensive special design Koni adjustables that we had built for the Monte Carlo rally. I also used the spare set on my 8 port car. You get what you pay for? For a non adjustable, Bilsteins rate highly although like the Koni specials are expensive, but you get what you pay for. The essence of a quality damper is to upgrade performance by using more sophisticated higher quality component build in the valving, piston, rod and seals etc along with a performance upgrade to improve the cars road holding.

Idler Gear - Setting End Float

A fairly crucial part of how the idler gear operates is its tolerances and running clearances. part numbers: 22A1545, 22A1546, 22A1547, 22A1548, 22A1549, DAM4822, DAM4823, DAM4824, DAM4825, GUG705563GM, AAU8424, ADU6033, CCN110, 2A3643, 22A152, 53K547, Terminology: DTI - Dial Test Indicator End float is a continual problem as folk either ignore it through ignorance or lack of accessible information on how to do it, or belief special tools are needed. Also, later factory assembled engine units (from about 1992 onwards) were built up using whatever shims and thrust washers were available, since Rover were not making regular orders for all shim/washer sizes due to the forthcoming end of production. Consequently, many units left Rover with incorrect (usually too big) clearances. The idler gear was no exception. Too tight a clearance and the idler gear will either seize solid when it gets hot, or destroy the thrust washer thrust faces in the comparably soft aluminium gearbox and t

GEARBOX - Up-Rating Drop Gears

The standard drop gears are fine for practically all road use - almost irrespective of power output. part numbers: DAM9373, C-STR123, C-STR124, C-STR30, C-STR30A, C-STR30T, C-STR30TA, C-STR230, C-STR240, C-STR250 Terminology - Drop Gears - Transfer gears (primary, idler and input gears) Large-bore - Refers to anything based on a 1275-type unit Small-bore - Refers to anything based on 850/998/1098 units Despite what many folk believe - they are more than strong enough, and will perform perfectly well if correctly set up. That means getting the idler and primary gear end floats right, and using new bearings for the idler gear at each re-build. Simply following the methods outlined in the relevant workshop manuals will achieve these simple goals. There are two problems with standard drop gears - the main one is the helical cut of the teeth, the other a very limited selection of ratios. The helical-cut teeth are essentially power absorbing - both from increased metal-to-metal c

Engine - Identification Data Updated

If you have the engine tag still attached to the engine - just in front/below the thermostat housing - or perhaps the original engine number in the log book then the following should help you determine which engine you have. For Metro units, see 'Engine - Metro identification data'. Original engine identification numbers 850cc 8A Austin up to 25000 8MB Morris up to 25000 8AM Austin & Morris 25000 onwards 8AH Austin & Morris Automatic 8AJ Austin & Morris closed circuit breathing 8AK Austin & Morris automatic with closed circuit breathing 8WR Wolseley Hornet & Riley Elf 8AC Moke 85H/101 All variants 1969 onwards Note: third suffix letter denotes compression type, L = Low, H = High, e.g. 8AM/U/H101 denotes high compression. 998cc 9WR Wolseley Hornet & Riley Elf Mk2, pre closed circuit breathing 9AD Austin, Wolseley Hornet & Riley Elf Mk2 with remote type gearbox and closed

Engine - Running in Procedure

This is another of those subjects that crops up on the message board frequently. I am constantly surprised by the number of engine builders - or people who charge other folk for building engines at any rate - that never hand out such an information sheet. It seems pretty daft to me that having taken a wad of money off of a customer for an engine you've lovingly put together, you'd want to help that person get the very best out of the engine. And the running/breaking in procedure is absolutely crucial. It at least ensures no damage is incurred when the engine first bursts into life. A collection of the usual suspects have explained their own methods on the board, along with various others - many of which probably work just as well for them, a few which are down-right dubious. Following is a sheet I administer with every customer engine I build.

Cooling - Controlling water temperature

The introduction of the Cooper S proved to be a testing time for the Mini’s systems, but conveniently provide a guideline as to what the standard cooling system was capable of - that used on the ‘S’ was marginal to say the least!

It wasn’t uncommon for many S’s to spew water from their overflow pipes when ever it was doing anything other than a steady 70 miles an hour, over-heating eventually caused through water loss. Perhaps some deductions can be made from the following…

There are a number of elements involved in controlling water temperature. Some confusion over what to sort first when over-heating occurs leads to wasted time and money, and possibly terminal engine damage. Maximum power is usually generated from A-series engines at 70 – 75 degrees C (160 to 170 degrees F). The main problem with this on a road car is the oil’s unlikely to get hot enough for maximum performance – the results outlined previously.

Cylinder head - Suitability basics

Whatever else owners do to their Minis by way of interior/exterior modifications or none at all, a very large proportion desire and search for an increase in engine performance.

See bottom for useful part numbers.

Now this may not be super-sonic speed-inducing power, it could just as well be for maximum economy. In either case, it's the engines volumetric efficiency (VE) under scrutiny - it's ability to breath in as much correctly proportioned air/fuel mix as possible in any given situation. Although the induction/exhaust system plays an important part, there are effectively two major factors that dictate performance increases - the camshaft and cylinder head. The induction and exhaust elements (stage one kits, exhaust systems, etc.) and camshafts are covered in various other articles in my 'Corner'. So here we'll have a look at cylinder heads and dispel some of the myths and legends surrounding them.

Cylinder head - Torque-down and head gasket problems

This is to help those floundering in an unknown sea of techno-babble and 'magical' cures… Part No Applications: C-AHT288, CAM150, CAM151, TAM1617, CAM4545, 51K1193, TAM1521, GEG300, C-AHT188, C-STR1057, A regular visitor to the message board, and something I am asked frequently about in my other incarnations for other technical media. Generally when something has gone badly wrong! Many folks have just as many ways of dealing with the following subjects - all can and will claim their way has worked for them for the proverbial millennia - so a few words as a basic reference and guide as I see them; we all know there are always exceptions to the rules. This is to help those floundering in an unknown sea of techno-babble and 'magical' cures…

Engine - Identification data

If you have the engine tag still attached to the engine - just in front/below the thermostat housing - or perhaps the original engine number in the log book then the following should help you determine which engine you have. For Metro units, see 'Engine - Metro identification data'. Original engine identification numbers 850cc 8A Austin up to 25000 8MB Morris up to 25000 8AM Austin & Morris 25000 onwards 8AH Austin & Morris Automatic 8AJ Austin & Morris closed circuit breathing 8AK Austin & Morris automatic with closed circuit breathing 8WR Wolseley Hornet & Riley Elf 8AC Moke 85H/101 All variants 1969 onwards Note: third suffix letter denotes compression type, L = Low, H = High, e.g. 8AM/U/H101 denotes high compression.

RUNNING IN NEW ENGINES

Install engine. It is absolutely imperative that the cooling system is more than sufficient to deal with any temperatures likely to be produced by the engine. More power means more heat to be dissipated. A standard radiator is very unlikely to be able to cope with a reasonable power increase over standard.

Do not fill cooling system yet. Set clutch throw-out and free-play take up. Double-check all connections electrical, oil, fuel and cooling system. Put in engine oil – use a cheap multi-grade mineral oil. DO NOT use either semi or full synthetic oils. They will stop the rings from bedding in. Remove spark plugs, and spin engine over in bursts of a few seconds to pick up oil pressure and prevent starter motor damage. DO NOT start engine until oil pressure picks up.

Once oil pressure is showing, check ignition timing statically. Set to figure advised by distributor maker, or if no figures available, set at around 6-8 degrees BTDC. Re-fit spark plugs a

Flywheel & Clutch - General information

If there's one subject that gets washed over when transplants or modifications are discussed its the flywheel and clutch assembly. There also seems to be a widely held belief that up-rating an engine from anything other than standard automatically requires a 'competition clutch'.

This, as with many other subjects concerning the Mini, is a myth. May be it's because the prospective transplantee needs not only a bigger/more powerful engine to amaze folk with in the bar stool bullsh*t stakes, but also anything that can be dubbed with the word 'competition'. 'Up-rated', after all, is a fairly tame word.

Although many have written much about how to modify engines, some suspension, and even on bodywork, very little has been written about the flywheel and clutch. Bit strange as it's an essential part of transferring engine power to the wheels! So let us delve into the myths and legends concerning this enigma of power transfer.

2003-08, Oil gallery plugs

Here's something unusual that cropped up a little while ago that I've never commented on before - main oil gallery plugs/bungs.

I'd been conversing via e-mail with a guy that was experiencing weird oil flow/supply problems with his performance street engine. Initially he'd been blaming it on the supposedly superior oil pump he'd bought. He sent it to me; I inspected it and found it to be in perfect health with no signs of causing the issues in hand. Firstly there was a claimed total oil drain down from the pump causing lack of initial supply on start-up for a few seconds, and then repeated crank bearing failures when used in anger (i.e. at high rpm for protracted periods). Unless there is something drastically wrong with the oil pump and fitment - cracked pump body, non-flat mounting surface, mounting bolts too long, split gasket, etc. - it will not drain down simply because the inlet and outlet ports are above the centerline, near the top of the pump as it is mounted to the block.

Lubrication - Oil pumps

Essential to the well being of every engine is its oil pump and oil. Much in the same way as the heart and blood is deemed relatively important to us humans! It's also another of those greatly misunderstood and, unfortunately, misrepresented subjects connected to engines.

An alarming number of so-called A-series engine specialists would have you believe that once parting with a veritable bundle of your hard earned readies on that mega motor, what you really need to keep it in good health is a high-pressure/high-flow oil pump. Seems a sensible consideration - except in the A-series world it's impossible. Oh, there are pumps that will give better flow rates than others, but high pressure? Absolutely not.

Oil pressure is regulated by the relief valve in the block of an A-series, not in the oil pump as with say a Ford. Yeah, you know - the one that gets jammed, causing heart failure as you believe your crank bearings have dissolved, and is a pig to get out.

Lubrication - Oil, what it does and how

It's criminal. Folk spend fortunes putting together super-sonic motors, only to skimp on the oil they use. Why? Oil's oil right? Wrong. Even if it's a standard engine, it deserves TLC considering it's extremely hostile working environment.

Oil is literally the engine's life-blood. The opening few sentences are astonishingly true. Oil isn't there just to prevent all metal components within an engine fusing together in the first few seconds of running, creating a total melt down of Chernobyl proportions. It's an intricate blending of chemicals to protect the engine as a whole.

The most commonly uttered statement about engine wear is most wear occurs within the first 10 minutes from start up when cold. True if cheap chip fat oil is used.In performance and race engines, a considerable amount of wear is created by heat, load, speed, and pressure. Again, cheapy oil won't give protection here.

Pistons - favourable features for maximum performance

The over-riding factor that influences just what is best for an A-Series engine is the block's propensity for flex at higher rpm, and the crank's equal propensity for flex at the same sort of rpm levels. Both combine to require a piston that is as stable as possible to maintain effective and consistent ring-seal performance. Reduced ring seal equals dramatically reduced performance. And none of this is at all helped by the relatively enormous distance from the wrist pin centre to crown height on most A-series pistons. Overall shape For the longest time, pistons were made round (well, 'ish' anyway) and straight sided (again - 'ish' is applicable here too) to form a cylinder, the top closed in to retain the all-important fuel/mixture charge; mainly because this was the simplest shape that would fill/block off the cylinder (bore) in an engine to greatest effect for minimum outlay.

Pistons - Mega piston performance report

Under 'Pistons - Favourable features for maximum performance' it would seem that the Mega pistons fit the bill just about spot on for all but perhaps the most extreme of racing engines. Or are they? Having used these pistons in all sizes from +0.020" to 73.5mm in all aspects of use - road/street to full race I am now in a position to give a report on their performance. Some have reservations about using the pistons in racing engines because they are a few grams heavier than other pistons available, and they are cast as opposed to forged. However, Mini Spares recruited the AE Hepolite Group for their unquestionable and renowned design and manufacturing expertise. The goal was to produce the most robust piston possible given reasonable cost and weight limits. Applying current technological advances incorporating their very latest hi-spec AE109TF lightweight alloy and special double heat treatments, the result is an extremely durable piston that will withstand greater cylinder pressure

Pistons - Whys and wherefores

For many, trying to make an informed decision about which type of pistons they should use for their application is a very difficult thing to do. Mostly you have to rely on guidance from a very few sources such as engine builders  and Mini spares specialists, who are most likely to recommend whatever it is they use or sell.
And that is not necessarily a bad thing where those companies have strong reputations for good quality products. But even those specialists may not know all that much about the pistons they use or sell. Particularly since trying to get any really useful information out of the manufacturers concerned is practically impossible. Try contacting AE Hepolite technical. Getting hold of someone takes real perseverance. Having achieved that meagre goal, enquiring about piston specification gets those ‘lemon sucking’ sorts of noises – anybody would think you are asking for the Holy Grail! So I’m going to try and cut through the techno-babble to help you identify a

Primary Gear - Setting end float

A fairly crucial part of how the primary gear operates is its tolerances and running clearances. End float is a continual problem as folk either ignore it through ignorance or lack of accessible information on how to do it, or belief special tools are needed.

Terminology: DTI - Dial Test Indicator Also, later factory assembled engine units (from about 1992 onwards) were built up using whatever thrust washers were available, since Rover were not making regular orders for all shim/washer sizes due to the forthcoming end of production. Consequently, many units left Rover with incorrect (usually too big) clearances. The primary gear was no exception. Too much end float and clutch disengagement is adversely affected, the gear floating up and down the crankshaft in unison with the clutch plate. The result is a graunching gear change since the plate isn't clearing the flywheel and pressure plate surfaces fully. Too little end float and the gear is likely to be pinched tight as it

SU CARBURETTORS - HOW THEY WORK

Basic knowledge Even though the SU carburetter (carb) is a very basic yet precise instrument, some fundamental understanding on just how it works is needed to be able to deal with common problems and tuning. Following is as basic a description of what's going on that I can manage! First you need to be comfortable with the main aim of any carb - to supply the engine with a finely atomized fuel/air mixture in the right strength for all operating conditions. This means from idle to flat out and everything in-between. All carbs achieve this using the same method - a venturi or choke (restriction) is used to speed up the velocity of the in-coming air to create a reduction in pressure. This is used to draw fuel from the float chamber via a suitably sized jet hole into the air stream, and hence into the engine. The perfect carb will supply the engine with optimum mixture for both maximum power throughout the full throttle-angle range (variable restriction - as in butterfly and spindle) a

Suspension - Dampers, basic knowledge

The damper's job is very simple to explain - to keep the tyre in contact with the ground wherever and whenever possible...
prev of  next